抒情的解释可以帮助人们快速理解歌曲及其歌词,还可以使管理,检索和发现音乐档案不断增长,从而更加容易地检索和发现歌曲。在本文中,我们提出了Bart-Fusion,这是一种新型模型,用于从歌词和音乐音频中生成歌词解释,该模型将大规模的预训练的语言模型与音频编码器结合在一起。我们采用跨模式注意模块将音频表示形式纳入歌词表示形式,以帮助预先训练的语言模型从音频的角度了解歌曲,同时保留语言模型的原始生成性能。我们还发布了歌曲解释数据集,这是一个新的大型数据集,用于培训和评估我们的模型。实验结果表明,其他音频信息有助于我们的模型更好地理解单词和音乐,并产生精确和流利的解释。跨模式音乐检索的另一个实验表明,巴特融合产生的解释也可以帮助人们比原始的巴特更准确地检索音乐。
translated by 谷歌翻译
解开的顺序自动编码器(DSAE)代表一类概率图形模型,该模型描述了具有动态潜在变量和静态潜在变量的观察到的序列。前者以与观测值相同的帧速率编码信息,而后者在全球范围内控制整个序列。这引入了归纳偏见,并促进了基础本地和全球因素的无监督分解。在本文中,我们表明,香草dsae对动态潜在变量的模型结构和容量的选择敏感,并且容易折叠静态潜在变量。作为对策,我们提出了TS-DSAE,这是一个两阶段的培训框架,首先学习序列级别的先验分布,随后将其用于正规化该模型并促进辅助目标以促进分解。在广泛的模型配置中,对全局因子崩溃问题进行了完全无监督和强大的框架。它还避免了典型的解决方案,例如通常涉及费力参数调整和特定于域的数据增强的对抗训练。我们进行定量和定性评估,以证明其在人工音乐和现实音乐音频数据集上的分离方面的鲁棒性。
translated by 谷歌翻译
具有更多数据,计算和参数的缩放语言模型在自然语言处理方面取得了重大进展。例如,由于缩放,GPT-3能够在内心学习任务上实现强烈结果。但是,培训这些大密度模型需要大量的计算资源。在本文中,我们提出并开发了名为Glam(通用语言模型)的语言模型系列,它使用稀疏激活的专家架构来规模模型容量,同时与致密变体相比,也产生显着更少的训练成本。最大的Glam具有1.2万亿参数,比GPT-3大约为7倍。它仅消耗了用于训练GPT-3的1/3的能量,并且需要一半的计算拖鞋进行推理,同时仍然在29个NLP任务中实现更好的整体零射击和一次性性能。
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
Tobacco origin identification is significantly important in tobacco industry. Modeling analysis for sensor data with near infrared spectroscopy has become a popular method for rapid detection of internal features. However, for sensor data analysis using traditional artificial neural network or deep network models, the training process is extremely time-consuming. In this paper, a novel broad learning system with Takagi-Sugeno (TS) fuzzy subsystem is proposed for rapid identification of tobacco origin. Incremental learning is employed in the proposed method, which obtains the weight matrix of the network after a very small amount of computation, resulting in much shorter training time for the model, with only about 3 seconds for the extra step training. The experimental results show that the TS fuzzy subsystem can extract features from the near infrared data and effectively improve the recognition performance. The proposed method can achieve the highest prediction accuracy (95.59 %) in comparison to the traditional classification algorithms, artificial neural network, and deep convolutional neural network, and has a great advantage in the training time with only about 128 seconds.
translated by 谷歌翻译
Accurate modeling of ship performance is crucial for the shipping industry to optimize fuel consumption and subsequently reduce emissions. However, predicting the speed-power relation in real-world conditions remains a challenge. In this study, we used in-service monitoring data from multiple vessels with different hull shapes to compare the accuracy of data-driven machine learning (ML) algorithms to traditional methods for assessing ship performance. Our analysis consists of two main parts: (1) a comparison of sea trial curves with calm-water curves fitted on operational data, and (2) a benchmark of multiple added wave resistance theories with an ML-based approach. Our results showed that a simple neural network outperformed established semi-empirical formulas following first principles. The neural network only required operational data as input, while the traditional methods required extensive ship particulars that are often unavailable. These findings suggest that data-driven algorithms may be more effective for predicting ship performance in practical applications.
translated by 谷歌翻译
As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).
translated by 谷歌翻译
Market sentiment analysis on social media content requires knowledge of both financial markets and social media jargon, which makes it a challenging task for human raters. The resulting lack of high-quality labeled data stands in the way of conventional supervised learning methods. Instead, we approach this problem using semi-supervised learning with a large language model (LLM). Our pipeline generates weak financial sentiment labels for Reddit posts with an LLM and then uses that data to train a small model that can be served in production. We find that prompting the LLM to produce Chain-of-Thought summaries and forcing it through several reasoning paths helps generate more stable and accurate labels, while using a regression loss further improves distillation quality. With only a handful of prompts, the final model performs on par with existing supervised models. Though production applications of our model are limited by ethical considerations, the model's competitive performance points to the great potential of using LLMs for tasks that otherwise require skill-intensive annotation.
translated by 谷歌翻译